MASA CONTRACTOR
REPORT

NASA CR-37

FINITE ELEMENT SOLUTION FOR
THIN

by Z. A. Lu, . Penzien, and E. P. Popov

Prepared under Grant No. NsG-274-63 by
UNIVERSITY OF CALIFORNIA
Berkelev, California

for

NATIONAL AERONAUTI(S AWD SPACE ADMINISTRATION «  WASHIRGTOWR B. (.«  JULY 1954




FINITE ELEMENT SOLUTION FOR

THIN SHELLS OF REVOLUTION

By Z. A. Lu, J. Penzien, and E, P. Popov

Prepared under Grant No, NsG-274-63 by
UNIVERSITY OF CALIFORNIA

Berkeley, California

This report is reproduced photographically
from copy supplied by the contractor.

! NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Commerce,
Washington, D, C. 20230 -- Price $2,25




II.
III.

Iv.

=

TABLE OF CONTENTS

Foreward
Acknowledgment
Introduction
Review of Mathematical Formulations
Theory of Finite Element Solution
A. General Procedure
B. Element Flexibilities
1. Conical Segment
2. Cylindrical Segment
3. Spherical Cap
a) The Case With Singularity
b) The Case Without Singularity
C. Joint Loads
1. Approximate Joint Loads
2. Joint Loads from Fixed-Edge Forces of the Element
a) Spherical Cap
b) Conical Ring
¢) Cylindrical Ring
D. Matrix Solution of the Problem
1. The Standard Matrix Operations
2. The Direct Stiffness Method

3. Special Methods for Shells Subject to Internal
Pressure

Applications of Finite Element Solution
A. Examples 1-10

B. Computer Programs

Conclusions

Bibliography

iii

vi.

11
11
22
28
30
34
37
38
Lo
4
L3
L5
L6
L6
52

56
58
58
70
72
75



FOREWORD

The research described in this report, "Finite Element
Solution for Thin Shells of Revolution", was conducted under
the supervision and technical responsibility of Joseph Penzien
and Egor P. Popov, Professors of Civil Engineering, Division
of Structural Engineering and Structural Mechanics, University
of California, Berkeley, California and was sponsored by the
National Aeronautics and Space Administration under NASA
Research Grant No. NsG 274-62. Mr. Z. A. Lu, Graduate Student,
was responsible for carrying out the detailed theoretical

derivations.




ACKNO//LEDGMENT

The authors wish to express their appreciation and
sincere thanks to all those individuals who contributed to
the completion of this phase of the general investigation.
Assistance of Structural Engineering and Structural Mechanies
graduate student, Michael Ting, in several phases of this
work was particularly valuable. The authors also acknowledge
with gratitude the advice received on the computer program
from Professor C. F. Scheffey, Edward Wilson, Ian King, and
the Computer Center staff. The careful typing of the final

manuscript was done by Mrs. S. Kishi and Mrs. M. Umsted.

Finally, the authors wish to tharnk the National
Aeronautics and Space Administration for the financial

assistance which made this investigation possible.




I. INTRODUCTION

.Thin shells of revolution are widely used in flight structures and
their analysis is of great importance to the design engineer. In such
shells for symmetrical loadings and small displacements, the membrane
stresses and the corresponding elastic displacements can be readily
computed. However, due to the variations in thickness, ring-like
reinforcements at openings and junctures with the adjoining shells and/or
structures, very important bending stresses develop. The analysis of such
stresses may be very complex. In fact, solutions are available only for
the few simplest possible shapes of the meridian. Also very few solutions
exist for the cases of Xariable thickness and in some of the solutions
which are available, the thickness variation is prescribed for reasons of
mathematical expediency. On the other hand, functional and manufacturing
requirements often demand arbitrary shape and thickness variation of the
shell of revolution. To achieve a practical solution for such a general
problem is the primary purpose of this investigation.

This first report of the general investigation confines its
attention to the elastic analysis of arbitrary shells of revolution
assuming small deformations. A general solution of this problem has been
obtained by employing finite elements into which any shell of revolution
may be subdivided. The basic finite element is a truncated conical shell.
Presentation of the detailed analysis of element flexibility, joint loads,
matrix solution of the problem, and examples solved with the aid of an
IBM 7090 computer form the basis of this report. The developed proce-

dures are quite general and can be applied to any symmetrically loadec




shell of revolution. This includes possible variations in shell thickness

as well as boundary conditions.




II. REVIEW OF MATHEMATICAL FORMULATIONS

A search of literature shows that the general problem of axi-
symmetrically loaded shells of revolution has not been completely solved
for the case of arbitrary shape and thickness, non-elastic material and
large deformations. However, governing differential equations have been
formulated and solutions are available for certain special cases with
elastic materials. These will be summarized below.

H. Reissner and Meissner first formulated the governing equations
of shells of revolution based on the classical theory of elasticity
which can be easily found in Fligge's book on shells(l).
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Timoshenko in his book gives also the same relations using somewhat
(2)

different notations .

The general procedure of solving Equations (A) consists of eliminating
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cne or the other of the dependent variables and forming an uncoupled fourth
order differential equation. Such an equation is then split, if possible,
into two second order differential equations which are then solved.
Alternatively, an asymptotic or numerical procedures are used to obtain
a solution.

For thin spherical shells of constant thickness, the Reissner-

Meissner equations (A) can be solved exactly by the use of hypergeometric

(1)(2), (3)

series ; and Zagustin and Young solution using asymptotic integra-

tion gives good results foar all regions of the shell.
For variable thickness, splitting the two fourth order differential

equations into second order equations can be achieved under certain

(1)

conditions . But asymptotic methods are necessary in general. Rygol

(&)

solved the resulting asymptotic differential equation in the form

1"

Q¢ + hxu Q¢ = O by approximating the thickness function X\ with two
constants. The solution is exact for certain variation of thickness.
Kbvalenko(S) solved the problem of conical shells of linearly variable
thickness when the thickness increases toward the apex.

When the deformations increase, the problem becames more complicated.

(6)(7)

E.Reissner formulated the governing equations for the case of small

.

deformation but arbitrary rotation as follows.
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and retaining only powers up to, or in certain expressions, lower than
62 he obtained the "small finite deflection theory". The governing

equations become
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For the general case, a solution of these equations is very diffi-

cult. But for special cases (cylinders, spheres) with constant thickness,

asymptotic solutions are possible.

If only the linear terms are retained, the above equations further
simplify into those corresponding to the "small deformation theory",
different form from that given by (A). The equations take the following

form:

T
+ [Z?'r—'- + v (—%ég%))—'} (rv) + W %’- (zv)' (B-b)

The solution possibility of this set has been discussed before.
8
Naghdi and De Silva( )(9)(20) did some work in detail on
E. Reissner's equation. Their solution process made use of complex

auxiliary functions and langer's method of asymptotic integration(ll).

Further complication arises when the effect of transverse shear
deformation is considered. Following E. Reissner's formulation for
small deformations Naghdi(lz)(B) included transverse shear deformation ‘,
and derived the following equations for general 8&Xisymmetrical shells of
revolution.
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If we set A and Vg5 = 0 , the equations reduce to (B-b).
The solution procedure for these equations is much the same as that
used earlier by Maghdi for the case without transverse shear effect.
For large deformations and non-linear material, solution can be
found only for membrane theory with isotropic incompressible ma.terial( 17) .

Since the available mathematical solutions are extremely complex

and since it is almost impossible to incorporate into these solutions



the general practical range of shells with regard to shape, thickness,
material, and magnitude of deformations, an approximate, stepwise, pseudo-
elastic finite element solution has been formulated. 1In a general
problem, the actual shell of revolution is considered to be an assemblage
of a large number of streight cones each of uniform thickness with the
exception of the top (or bottom) element which is & shallow spherical

cap of its own uniform thickness. Loads can be applied in small
increments for investigations of large deformations and/or inelastic
behavior of material. For each step of loading the displacements of the
nodal points and the forces in the conical and spherical elements can be
calculated by standard matrix operations. The displacements of the nodal
points define a new geometry of the assemblage and hence new geometry and
structural properties of each element. From the forces in the elements
the stresses and strains can be computed which determine whether or not

a new set of constants defining the material properties should be assigned
to each element for the next increment of load. In this manner, the
problems of large deformation and change of material properties after
yielding will be treated in subsequent reports. How the material
properties vary under biaxial stress conditions is the subject of a
separate experimental investigation. By making the size of elements and
the load increments sufficiently small, the actual case of smoothly
varying shape and thickness as well as gradual yielding of material can
be approximated. This report is confined, however, only to the analysis
of one load application, i.e., the reported solution is complete for
axisymmetrical loading of an arbitrary elastic shell of revolution

experiencing small displacements.




III. THEORY OF FINITE ELEMENT SOLUTION

A. General Procedure.

The basic principles and procedures employed in the applications
of the finite element method in structural analysis for the case of
small deformations and elastic material have become well known in
recent years and are described in several publications(la)(19)(20).

The basic steps consist of:

(1) Establishing the stiffness of the structure from the
stiffness (or flexibility) of the individual elements,

(2) Calculation of the forces on,cr the displacements of, the
Joints of the structure, and

(3) Calculation of the forces and deformations of the elements.
In Step (1), some matrices defining the geometrical relations between
the structure and the elements are used.

In the ordinary structural problems the element flexibilities
are symmetrical with respect to the main diagonal and only three
quantities are required to solve the problem completely. These
quantities are:

(1) Element stiffness matrix which includes the stiffness

of all elements in a diagonal arrangement,

(2) Loads or displacements imposed on the joints of the

structure, and
(3) The displacement transformation matrix.
However, in the problem considered here, element forces per unit length
are involved and hence unsymmetrical flexibility or stiffness matrices is

obtained. Therefore, another geometrical matrix which will be called




the “equilibrium matrix" is required in addition to the displacement
transformation matrix. Each of these quantities will be discussed in

detail in subsequent sections.
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B. Element Flexibilities

1. Conical Segment. The displacements of the edges of a conical

ring due to forces (including moments) applied on the edges can be obtained
from mathematical solutions for conical shells. The expressions derived
by Fitigge' Y will be used as the basis of our formulation.

Fligge's bending solution of conical shell yields the following

relations.

Q = % [Al(ber y - 2y'l bei'y) + Ag(bei Y+ 2y-1 ber'y)

+ Bl(ker vy - 2y-l kei'y) + Ba(kei v+ Zy-l ker'y)]

NS = —QS cot @
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. (I-a)
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+
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- B, [y ker'y - 2(1 - v)(ker y - 2y -1 kei'y)}}
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+ B

l:vy kei'y + 2(1 - v)(kei y + 2y-l ker'y):l
- B, l:vy ker'y + 2(1 - v)(ker y - 2y'l kei'y)]}
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Fllgege did not give expressions for v and w . But these can

be derived from the stress-strain and strain-displacement relations
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FIG.1 - CONICAL ELEMENT
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Using the expressions for Ny and N_ from (I-a), eliminating

and integrating (II), we obtain

2 cota

v = —=——=1{ A I_-Yber - (1 +v) "L pei
= "Bt 1|z =T y v

v -1
+ A, 3 bei y + (1 + v)y ber'yJ

+ B % ker y - (1 + v)y-l kei'y]

v -1
+ B |zkeiy+ (1+v)y ker‘y]

2
cot a :
Vo= 5 {Al[bery—%yber'y]+A2[beiy-%ybel'yJ

+ B [ker y-3%75 ker’yJ + B, [kei y -3y kei'y”

In the first of (I-b) integrals of Thompson functions have been removed

by using the following identities

y y
f y ber y dy = y bei'y , / Yy bei y dy = -y ber'y
o Yo

y y
J ykery dy =y kei'y , / vy kel y dy = -y ker'y
o) Yo

The positive directions of the forces and displacements in a conical
element are shown in Fig. 1.

It should be noted that Fliugge's bending solution of conical shell
was obtained from a system in which only horizontal force acts radially
at the periphery, the vertical force on the ring is zero. This can be
noted from Fliigge's comment on the governing differential equation in
Ref. (1), and is reflected by the expressions of Qs and NS from

(I-a) , Which imply that there is only one force H applied such that

I

Q = -Hsina , N H cos & (2)

=] S
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The expressions N_ and Ne given by (I-a) are the resulting membrane

forces in the shell due to the application of bending moments and

horizontal forces at the edges. If a force Ns is applied at the edge

of the ring as a source of disturbance, the induced forces and deforma-

tions in the shell cannot be obtained from (I-a) and (I-b) and should be

computed from the expressions resulting from a membrane type analysis.
Fligge also gives the solution to the problem of membrane

(1),

deformation of conical shells The resulting expressions for the

case where no distributed loads are applied to the shell surface are

C
v o= Fr log & + Cl
C
v o= - Fpcota (log s + v) - ¢, cot & (1-¢)
C 1
x: -"—'Et cot & —S-

where C and Cl are constants of integrations to be determined
from a force condition and a displacement condition respectively on
the boundary.

For the case of zero distributed loads, C = Ns° S = Né * 8, =

s sj .

It must be pointed out that for equilibrium in the vertical
direction a force Ng applied at edge J has to be balanced by a
force Ni applied at edge i . The bending moment or horizontal
force applied individually at either edge is self-equilibrating.
Membrane deformations can only be computed with respect to some
reference position which is governed by the constant Cl .
To avoid the coupling of bending and membrane actions and for the

reason mentioned in the previous paragraph, we choose Ms , H applied

at both edges and Ns applied at the lower edge as the basic element
1k



force quantities, and arbitrarily assume that the ring is held stationary
at the upper edge during stretch, i.e. v, o= 0, under the action of

membrane force Ns .

Four boundary conditions define the four constants Al s A2 ’ Bl R
B, of Eq. (I-a). These are
at Y= yi ’ MS = Mi ’ H = Hi (3)
at y=y:J R Ms=Mj R H=Hj
Upon substituting the expressions of Al ’ A2 , Bl 3 B2 , which are

now functions of M, , Mj , H , Hj into Egs. (I-a) and (I-b) we

i
obtain the force and deformation quantities as functions of Mi ’ Mj 5

Hi’

algebraic manlpulation is lengthy and tedious. Only the resulting

Hj and of Thompson functions and their first derivatives. The

expressions in symbolic form will be given below.

Before we present the resulting force and deformation expressions,
we need to define a few more quantities.

To correspond with the horizontal force H, there must be &

horizontal displacement 5 . From simple geometry
8 = wsinQ + v cos O (%)

We see that the positive direction of & is outward.

We then find that the deformations 7( 1 %j s O Sj as defined

i 2
by Fligge's solution are not all in the same direction as the correspond-

ing forces Mi s Mj s Hi ’ Hj . Also since the membrane force I\Tj and

Ni exist simultaneously we must define the corresponding deformation
in the same sense. (From now on we abtreviate the symbol Ni' and N‘;
as N, and N, where N, = T Nj .) Thus, we introduce the following

as the basic element deformation quantities corresponding to the basic

15



element force quantities we have chosen.

ol
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dji = minors of item 1ij in the determinant A .

bl(y) = bery - 2y_l bei'y

by(y) = beiy + 2y ver'y

kl(y) = kery - 2y-l kei'y

ky(y) = keiy + 2y"L ker'y

by (y) = ¥ ber'y - 2(1-v) b, ()

b, (y) = ¥y bei'y - 2(1-v) py(y)

ka(y) = ¥ ker'y - 2(1-v) k, (¥)

k(y) = ¥ kei'y - 2(1-v) k,(y)

o(y) = -3 ;y ber'y - 2(1+v) bl(y)}

be(y) = -2 [y bei'y - 2(1+v) ba(y);

) = B |y rery - 200) k)|

k(y) = -3 [y kei'y - 2(1+v) ke(y);

b9(y) = vbery - 2(1+v) y T bei'y
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From (I-c) with C = st and with the condition that v, = 0,

J

we find the deformations due to & pair of membrane force Nj and T N

J
applied at edges j and 1.

T cot &

— = - N
X1 Et J
- cot &
- "L T, |
X3 - Et J
_ s.cos Q
5, = V.0 "N (III-b)
i Tt 3
_ s.cos O
= 'V A4
® N
2]
e = =% log (r) « N

Et J

With Eq. (III-a) and (III-b) we developed the relationship:

f — h ( 3

Xi\ fll f12 0 0080 08 806000 fls Mi

XJL le f22 ® 5 5 8 08 806000 fas MJ

ﬁ By = f3l - Ho (6)
55 £),1 HJ
e hig P of N,

ey ! ss | L%,

or in the matrix notation

f is the flexibility matrix of the conical element and has a dimension
of 5x5. The inverse of f , called the stiffness matrix of the element

satisfies the relation
S = kv.

Once the edge forces Mi 3 Mj ) Hi y

forces and deformations at any point in the conical ring can be found

Hj , and N, are known, the
J

from Egs. (I-a) and (I-b) together with the relation
19
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and from (I-c) supplemented by
N.s
R i |
€, = Ft 108 84
N.s
N = —d (8)
s s
N, = O

Referring back to the shell solutions from which Eq. (6) was
developed we see that force quantities are all in units of pounds or
pound-inches per unit length. Hence the f matrix so obtained is not
symmetrical with respect to the main diagonal. Items of the matrix
representing deformations due to forces on the same edge of the ring
are symmetrical, while those representing effects of forces across the
edges are not. The latter bear a ratio of r to each other which
reflects the ratio of the circumferences between the two edges of the
ring. However, it can be easily shown that items of f wmatrix do
satisfy Betti's law. We could use the total forces around an edge as
basic force quantities and obtain a symmetrical f matrix. But since
at later stages we shall make frequent use of the expressions from
shell solutions which involve forces per unit length, we choose to
retain its present form.

The accuracy of the f matrix, judged from the values of the

quantities on opposite sides of the main diagonal, has been investigated

20




over a wide range of thickness, lengths, angles and radii of cones. It
was found that the first 4xlt portion is nearly perfect for almost any
case provided the length of the element is not smaller than the thickness,
but the fifth column and fifth row which depend on different mathematical
functions diverge more and more as the geometry of the cone approaches
extreme cases. The first 4xl submatrix, representing entirely the bend-
ing effect, is valid as long as tan @ is finite, but discrepancies between
items on opposite sides of the diagonal increase as Q approaches 90°;
in such cases the expressions for cylindrical shells should be used. To
reduce discrepancies between quantities of the fifth column and the fifth
row, it is recommended that for «a< 30° (since for small « plate action
predominates) quantities of the fifth row be used to establish those of
the fifth column (by multiplying w.ith appropriate factors), while for
a> 60° quantities of the fifth column be used to establish those of the
fifth row.

For conical rings with larger periphery on top, & is greater than
90° and cos O is negative. In this case, we shall take the larger slant

distance as the smaller slant distance as s (?( 1), and we can

84 » 3

use the same expression to obtain the flexibility matrix of the element,

provided a change of sign is applied to the values thus obtained for all

the third and fourth column quantities (fi.j ,i=1%t5, Jj=3,4)and
f £f__)e

357 "k’ 55)

This flexibility matrix after inversion will represent the stiffness of

to the last three of the fifth column quantities ( bil

the conical ring.
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2, Cylindrical Segment. For the cylindrical ring, the effects

of the bending forces and the membrane force also should be treated
separately. Both the bending solution and membrane solution for axi-
symmetrical cylinders are available in Ref. (1) and (2). Using the nota-
tions and sign convention by Flﬁgge(l) (Fig. 2), we established, after a
considerable amount of manipulation, the required relationships.

With a force N 1lbs. per inch applied at one end of a cylinder, there
must be an equal force N at the other end. The deformations due to

membrane force N are

_ _ VY Qs
v Et
N( x5 - xl)
e = u, ~u = —d = _
3 5 - (1v-a)
dw ’
= = 0
t N
X
a Qi"_—'— M] a
7 -— — X=X|
‘Vf4—-1
U 1
N M) o )
Y -
W, x ! X=X
4 N

FIG. 2 - FORCES AND DEFORMATIONS IN
A CYLINDRICAL ELEMENT
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The bending solution of &axisymmetrical cylindrical sections yields

2
2K k -KE ;
M, = ——;5— [e (Cls1n K& - C, cos KE)
oo KE (03 sin kg - C) cos K§)A
2K &3

>¢D
1]

3 ] e K8 [(Cl + 02) cos KE - (Cl - Ca)sin Kgl
a ,

e 8 l:(c3 - cu) cos KE + (c3 + cu) sin K§H (Iv-v)

w = e KE [Cl cos K& + 02 sin K§] + e ke [03 cos KE + Ch sin Kg}

K
= - =€
a

Pad
n
HES
I

l_(cl- C,) cos K& + (C; + C,) sin KE]
+5 e Ke [(c3 +©,) cos kg - (Cy - C)) sin Kg]
4 = - == [ e E [(-C - C,) cos Kt +(p - C,) sin Kg}
3K 1 - % 1" %

+ e K8 [(03 - Ch) cos Kt + (C3 + Ch) sin K§]}4-C

12 72?

3 2
where K = —-—2317?- , Kh = 3(1-v2) 25 , E = E
12(1-v7) t
C c C3 ’ Ch , and C are constants of integration. The

constants C Ch can be determined by defining two

17 % C3
force quantities at each end of the ring, and the constant C

will drop out when only the expression of e = u.j - is wanted.
To conform to the particular force and deformation system
adopted as standard for our process (see Fig. 1 and Egs. (5) ), we

apply the four conditions
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at £ = &, = O Moo= M
at £ = & =0 Q= -H
at & = gj = ’-g M, = Mj (9)
wE= gj ) g U = 'Hj
To obtaln expressions of Cl’ Ca, C3, Ch in terms of Mi’ Mj’ Hi’ Hj .

Upon substitution of these expressions into (IV-b), there result

(reference to Eq. (5) ):

K N .
Xi = a { (C1y- €ap= €397 Cyp)™M; + (Cpp- Cpp- Cypm Cpp)°My

+ (Cr3m Cogm Ca37 Cug) By + (Cp- G- gy Chh)'Hj}

|
®Ix

Re
]

-0 , -w .
{ [-e (cos w + sin w) C,y+e (cos w - sin w) Coy

+ ew(cosw - sinw) C,, + ew(cos w + sin w) ChlJ * M

31 i

-0 =W
+ [-e (cos w + sin w) Cpote (cos w - sin w) Con

+ e“(cos w - sin w) C

W
32+ € (cos w + sin w) Cua] M

J

+ [-e-w(cos w + sin w) C e (cos w - sinw) C

13t 23

+ e (cos w - sin w) Cay + e (cos w + sin w) Cu3} *H

=W =W .
+ [-e (cos w + sin w) Cp) +e (cos w - sin w) Coy,

+ ew(cos W - sin w) C3h + e’(cos w + sin w) Cth . Hj}

o]
]

g o= (0 Ca) My + (-Cpp-Cap) My + (<C13-Cog) By + (-Cpy-C)) K,

o]
]

() -W . w W R R
(e cos w C;, +esinwC, +ecos wC, +esinw Chl) M,

21 31

+ (e ™¥cos we,. + e™¥sin wC.. + e’cos wC_. + e’sin “’Chz)'M

12 22 32 J

+ (e™eos wC.. + e¥sin w-C, . + ecos wC_. + e sin w°Cu3)'Hi

13 23 33

- . -, w w_. . .
+ (e cos w Cp +e sin w-Cy) + e cos wCy + e sinw chh) H

3
2k




where

) 1 , ) b
e = #{{e'w(cos W - sin w)-l_]'c:L3 + Le_‘n(cos w + sin wi-1 T,
- ew(cos w + sin w)-lJ°C33 + [ew(cos w - sin w)-l""_‘;%} "H,
_L -w' \ [A - . -w < 4\\._‘-].."3
+ 5 {[e {cos © - sin w) 1} Cpy + [e (cos w + sin @ l_,- o,
- ew(cos W + sin w)-1[C., + ew(cos w - sin w)-1C i
34 L 3
W= K ‘g c C N C satisfy the relations
a ’ “11° Y12 43 * L4 }
— : ° O ° ~ . .
mn — . . ¢ . t °
S = C2l Mi + C22 MJ + C23 Hi + Cah Hj |
1G
C. = C..°M, + C_.*M, + C__°H, + C,,*H,
3 3171 327 3371 3% 7
_lﬁ__l a2 e Dp1 a2 c D3y a3_ c Dy; 43
P) = - » = =S TR - TR
& a2’ 12 Ao’ BT A 37 T O g3
Do &® c Doo &2 ~ 332 a3 o Dyp &3
. == << , - e
Ao’ 22 a P B A ool AT 8 3
e E - N e ¢ - N L
A g’ R T - NP A 2k
Pue & Pew & Py &3, Dw ad
- — P o= — s = = - b =T 2
2Kk 27 A P 43 8 23 BT oA a3

A = [2sinw+(ew-e-w)]'[Zsm“-(ew-e‘w)]

ccsaw-sinaw-eaw

i

= - (cos w + sin w)(e” - e™) - 2 sin we”
2

= ew-l-sinzw

= cosw (e - e™) - 2 sin we
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(cos w - sin w)2 +2sin” v - ¥

D12 =
Dyp = =COS W (¥ - e™) - sinw (& + e™)
2
D32 = 2s8in w
w -0
Dy, = -sinw (e” -e™)

D = e 2V + sin 2w + cos 2w

13
D23 = (cos w - sin w)(e” - e-w) +2sinw e e
D33 = 1 - e-2w - sin 2w
D, = cosw (¥ -e™) - 2sinwe- e

3

-2W 2
Dlh = e -2gin" w - sin 2w - 1
Dy, = =-cos (" - e™) - sin w(e” + ™)
2
D3h = 2sin w
w -w

Dy, = -sinw (e - e™)

Equations (IV-a) yield

561 = 0

X; = °

B, = -w, = =N (11)
gJ = W, o= - %% N
e = é% N

From Egs. (10) and (11), the flexibility matrix of a cylindrical

ring can be obtained such that
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%1 My
X3 "
(b = [fJ<Hi,
5, E,
Let \NJ

in which flS ’ f25 ’ fSl s f52 are known to be zeros. The stiffness

of the cylindrical ring is obtained by inversion of the f matrix.

(12)
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3. Spherical Cap. Fllgge and Timoshenko both present the

asymptotic solution for bending of & shallow spherical shell in their
books(l)(a). The resulting general expressions are given below with

the notations shown in Fig. 3.

WV o= Cl ber x + 02 bei x + C3 kei x - Ch ker x + C6

é s Vg 1 1
v = -% (L +v) { C, bei'x C, ber'x C3 ker'x

- C), kei'x - Eﬁ + C X
b X 6 (T+v)

- 1 ' ) S ha '
A = 7 (Cl ber'x + C, bei'x + C3 kei'x - C, ker x)
K {c [ vet x - & (1-y)ver 1 x|
M, = 7 {Cl[ bei x - = (1-v)ver x} + Cz[Per x - (l-V)bEI'XJ
+Clker x - £ (1-v)kei'x| - C, | -kei x - = (1-v)ker'x
3 X 4 X
M o= Elc (l-v)l ber'x - v bei x| + C (l-v)i bei'x + v ber xh
o = p2|71 x {72 X v
+C (l-v)l kei'x + v ker xﬂ -C (l-v)} ker'x - v kei xN
3 x 4 X
= B oo Lyerix -0 L peir L geir
Nr = 5 [02 " ber'x Cl - bei'x + Ch - kei'x
1o, 1
+ C3 x\ker X + C5 x2J
Et . 1 1 .
Ny = - % [02 (-bei x - z ber'x) - ¢, (ver x - = bei'x)
+ C, (ker x - i kei'x) + C, (-kei x - L ker'x) - Si
L X 3 X %2

K

Q = e [-cl bei'x + C, ber'x + C_ ker'x + C) kei'xJ

3

From the above for shallow shells, the horizontal and vertical

components of forces and displacements can be found with the relations:
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=
n
HZ
1
oI

L
"
=
o
+
._{D

The solution with six constants of integration is very general,
and applies to both the cases with and without a singularity at the

apex.

Using the second of Eq. (13), we find

(13)

C
& - -EF 2 -5

Fligge mentions(l) that C5 is related to the total vertical force

applied above a horizontal section at which the forces are considered.
Thus, C5 is dependent on the manner in which the spherical shell is
held in vertical equilibrium. We shall discuss the cases with and

without singularity and their relation to our problem separately.
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a) The Case with Singularity. Suppose the cap in Fig. U4 is

supported by a concentrated force P at the apex. Then apparently C5

is equal to a certain multiple of that force.

2 Jot
N YT

LA
j2

g1
12 (1-v2)

FIG. 3 - SHALLOW SPHERICAL CAP

FIG. 4
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Since the cap is under the combined action of P at the apex and
Q‘v around the periphery, the corresponding deformation must be the
change of height of the cap. If we choose the apex of the cap as

edge ()

represents the increase in height of the cap. The horizontal deforma-

reference point, i.e., (w) = 0, then (5_) = (5 )
r=0 v’edge v r=0

tion &, and change of slope X, offer no ambiguity. The conditions

h

at r=x=0, w and X, must be finite

at r=x=0, w=0
(1)
at r=x=0, Nr and Ne must be finite
The remaining three constants (‘:l ’ 02 » C5 can be determined

by defining three quantities at the edge:

at x=x° (1‘=1‘o), Mr=MO’ H=HO’ QV=QO

Then the deformations of the edge can be expressed in the following

forms.
- _l be 'X be lx M + _l be 1x ¢ ‘be lx H
%o -2 (C:L'L X, * C21 i o) o} L(C12 % c22 1 o) o
1 . 1 ' _ £%o <
+ (Z Cl3 ber xo + Z 023 bei xo < kel xo) Qo

£ '
Bho > cll X ber X (1 +v) bei X

+C x_ bei x +(1+v)ber'x]}M
| "o o o o

£ '
+ Cip | %, ber x_ - (1+v) bei on

2 *

+ Cop onbe1x0+(1+v)berxo]} H
+ ‘-e-C x_ ber x -(1+v)bei'x-

a 13 (o} o o

4 '

+ac23 xobeixo+(l+v)berxo

3

T
_ £ [x kei x + (1 +v) ker'x +S_];"_Vl:” Q
a K o] [o} [o] xo (o)
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where Cl

32

o)

_ £ e -
&v '{cll[ aax (1L +v) bei X beerJ

1

13

21

22

22"0 ’
e -
+ Cpy \: 2 (L + v) ver X bei on M

£ .
+ [ 012 ;2- X (1 + v) bel x - Der xo]
2
+C ’exo(l+v)1;er'x - bei x H
22 a.2 o o o]
£ -
Cl3 [ 2 X (L +v) vei x - ber xOJ

+
o——

R .
o
+ 023 L‘:-é- (L +v) ber'xo - bei xo-‘
£ (£ “
- 0 o] ' 1,y .
= [ " (1 +v) (ker'x + XO) kei XOJ} Q
14
2% ber xo
(VI-a)
a3x ‘

--]:.——o__[berx -il;vlbei'x-'
(o] xo o]

8 gt(a®s ri)

i {[ber X *ker'x - ber'x sker x - ﬁﬂl bei!'x *ker'x
JAN o) (o} o o) xo (o} (o}
2 -
r
+ Sﬂl ber'x *ker'x ] . ‘e S+ [ber X - (l'V) beitx J .
b4 o (o} K o bid o)
o o)
2 2
K(a“+ ro)
12 L
"A K bei xo
3
a” x
-i > 02 [bei X + (1-v ber'xJ
Et(a“+ ro) o




C = L bei x *ker'x - bei'x *ker x + (1-v) ber'x *ker'x
23 A (o) (o} o} [¢) xO o] (o}
- A
|
+S—wbei'x ‘kei'xJ . /4 °+Lbeix +Mber'x-'-
X o) (o} K o) X o
o] o)
23 &2
RS- 1N
K(a+ ro)

and A = -l:bei xo + (—3;'11 ber‘xo] [ber xo - M bei'xOJ

X
o] o]

bei'x ~-ber'x
o ) o

From Eq. (VI-a), the following relationship can be developed.

Xo %

{&h ¢ = [fo] RE:N (14)
5v, <

\ J J

or in matrix notation: vo =f 8

The 3x3 flexibility matrix fo defined by (14) theoretically
should be symmetrical. An actual example showed that there are slight
discrepancies between terms on opposite sides of the main diagonal.
This is due to the asymptotic nature of the solution and the use of
1 and r/s for cosine and sine of the extended angle ¢o . The use
of this f matrix in an actual problem in general yielded satisfactory
results except for 2 local "hump" near the singular support. However,
such local phencmenon can be minimized if the size of the cap is made
very small. In certain cases, such as the examples using approximate
joint loads (see examples in Section IV ), & 3x3 flexibility matrix like
this one is essential for obtaining the éorrect answer.
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b) The Case Without Singularity. When the vertical force

is balanced by some distributed pressure instead of a single force P
at apex, different constants of integration are required to achieve a
solution. For finite deformations and finite membrane forces at the

apex, C, and Cl{- must vanish. If we again consider the apex as the

3

vertical reference point, i.e, w=0 at r = x= 0, then C6 = -C:L

Qv

The remaining three constants Cl ’ 02 B 05 are eliminated by defining

three quantities Mo s Ho » QO at x = x, as before. On this basis,

‘the expressions for edge deformations become:
a3 X

1 2 ) 2 .
[(ber xo) + (bei xo) J M - AEtZ(ag+ ri) .

Rl

% = -

l-bei X «bei'x + ber x *ber'x J *H
o} o o] o) o}

4

a

+
AEtZE(a2+ r:)

[ber X *ber'x + bei x cbei'x J *Q
o) o] o) o o]

{berx-ber'x + bei x - bei'x } M
(o} o} o) (o} o)

£e? 2 2 X 2
) rEt(a®+ ri) { %o [(ber %)™ + (bet x) J

+

2 x [bei X sber'x - ber x ebei'x :]
o) o} o} o] o)

+

(1 - v2) [(ber'xo)2 + (bei'xo)a;]}. H

83

+

2 .o \2
A-Et(a2+ r‘g) [ X [(ber xo) + (bei xo) J

+ 2 [-bei X *ber'x - ber x *"bei'x ]
o] o) o o)

2 -
) [+ a4, - )

+

Et o
(o}
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R T r— r—

22
b
o

2
a

+ 1) ber'x } ‘M
o o

&I

5V = {ber X *ber'x + bei x .bei'x - (
o] [o] [s] o] [o]

a3 X 2 2 H
+—-——-—29-—2{[(berx) +(beix)J
5 Et(a%+ 1) ° °

*5 (1 - v)' i
+ | =5 (L+vy) ->=—"4|« |ber x *bei'x - bei x +ber'x }
a X, o o o o

2
- g-é (1-+9) [(ber'xo)2 + (bei'xo)z]

a
Y .
- ( :2 + 1) [ber x, - L———xo" bei'on} 4
e [(b 2 + (vei >2]
+ N Eto,e(a2+ ri) - er x )° + X

x i
- —-9——(l+v)-(—l—-—v—)-° ber x *bei'x - bei x ~ber'x
az xo o] [o] (o] [}

+f—; (1 - v2) [('b«a-r'xg)2 + (bei'xo)all

]

a2 [+) 5 (o} Et (o}

2 h X
+(°e2 + 1) [berx -%ﬁbei'xo”- Q-(iv—)-ﬂfq

If we form a 3x3 flexibility matrix fo from (VI-b) so as to satisfy
(14), we find that the third column and the third row are not symmetrical
with respect to the main diagonal. In this case Betti's law is not
satisfied because the part of the work done by the distributed pressure in
vertical direction is not included by considering only the quantities
appearing in Eq. (VI-b). Such a flexibility matrix cannot be used.

However, the relationships expressed by (VI-b) are valid, and the
first 2x2 matrix obtained from (VI-b) is the same as that obtained from
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(VI-a). This means that the force-deformation relationships in the
horizontal and rotational senses are independent of the manner in which
the cap is supported vertically. In our solution process using the
exact joint loads (see Sections III,C,2 and IV,A), we shall make use of
such a 2x2 flexibility matrix along with the first two coefficients

of the last equation of (VI-b).
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C. Joint Loads

In the finite element analysis, only the forces and displacements of
certain discrete points of the structure are considered. These points are
called the nodal points of the structure which are the junctions of the
individual elements. For axjsymmetric shells of revolution, these nodal
points are circles. If the structure is subjected to concentrated forces
applied at the nodal points, the results of the analysis will be exact if
the geometry of the element is exact. If distributed load exists, we can
either consider the distributed load as concentrated at several nodal
points, thus obtaining an approximate solution, or we can hold the nodal
points fixed in space and determine the fixed-edge forces of each element.
The reactions of these fixed-edge forces can be applied at the nodal
points as concentrated joint loads. The element forces and deformations
due to these concentrated joint loads superimposed on the fixed-edge
forces and deformations yield the final answers. Next, we shall discuss

the two alternative procedures in more details.
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1. Approximate Joint Loads.

AN

i

N

\

FIG. 5

Fig. 5 shows the developed surfaces of conical elements (a) and (b)

with Jjoints 1, 2, and 3; Cl and C, are their respective centroids.

2
The approximate load on joint 2 is due to the components of the total
pressure on the shaded area. Thus, we developed an expression for the

joint loads due to internal pressure P, -

Té = 0
r 4+ T r, +r
a "2 2 b .
Ph2 [( 21‘2 ) a sin oza + (——2};—) b sin Ofb:l pr
I Ty + Ty (15)
= | (——= a =
P, = [( 5z ) a cos ot ( 5r ) b cos ab] P..
2 2
where '1‘2 ) th B Pv2 are the moment, horizontal and vertical forces

applied at joint 2, a and b are the meridianal lengths of the

elements (a) and (b),

T, Ty are the horizontal radii of the centroidal

circle of elements (a) and (b)

r, = horizontal radius of joint 2
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S

@ , @ are the inclinations of elements (a) and (b)
as defined in Fig. 1l.

The loads contributed by pressure on the spherical cap are assumed
entirely concentrated on the bottom edge of the cap.

Such approximations yield only vertical and horizbntal forces and
no moment for the joint loads. Actual calculations showed that the
concentrated forces induce high negative moments at intermediate Jjoints,
even far from end restraints, where the action is known to be predominantly
membrane.

As the sizes of the elements are made smaller, these negative joint
moments decrease as expected. But in order to reduce these moments
to the magnitudes of what they should be in a nearly membrane state of
stress, we must divide the actual shell into a very large number of
elements.

A solution using these approximate joint loads, which are considered
as equivalent system to the actual loading, is quite satisfactory for the
solution of problems. In this solution, it is necessary to use a 3x3
flexibility for the spherical cap (as discussed in III, B, 3-a).
Otherwise, the results would show zero vertical element force in the cap

which is not correct.
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2. Joint Loads from Fixed-Edge Forces of the Element. A solution

using this type of Jjoint loads consists of the following steps: (Fig. 6)

(1) Fix all joints in space and compute the fixed-edge

forces in all elements.

(2) Reverse these fixed-edge forces, apply them on the joints,
and let the structure deform. Compute joint displacements.

Then determine the forces and deformations in the elements.

(3) The final states of forces and deformations in the
elements are obtained by adding (1) to (2).

FIND FEF IN JOINT LOAD AS (1Y+(2) GIVE
ELEMENTS. REVERSED FEF FINAL FORCES
AND DEFORMATIONS
FIND JOINT DIS- IN ELEMENTS.
PLACEMENTS,

ELEMENT FORGES,
AND DEFORMATIONS.

(1) (2) (3)

FIG. 6

For the case of ordinary structural: frames the solution is exact. For
the case of a shell, this solution, although exact in concept, does not
yield more accurate results than that found using approximate joint
loads. Moreover, this procedure involves more steps than the solution
using approximate joint loads. Therefore, it was not found to be
rarticularly advantageous. This will be discussed later in Section V.

The calculation of the fixed-edge forces in the spherical and

caical elements needs some further comments.
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a) Spherical Cap. Membrane solution of shallow spherical

shell gives
Xto = éllglz.) Pr " %%
e = él_é‘%l Pp ' T " 8 (16)
o = 21;*;.- Py’ 1‘02

Eq. (16) gives the membrane deformations {vmo} which have
been defined in Fig. 3. (Subscript m indicates membrane action).
The application of a set of edge forces { SFO} will produce edge
deformations {VFO} which when added to {vm} result in zero

deformations. Thus,

Fo o) Fo
£f S = -V
° F, m (17)
-1
SF = -fo . Vm
(o] (o]

For the case without singularity at apex, we use a 2x2 fo matrix

(refer to III, B, 3). Hence

The third component of the element forces can be found separately:

=

p_* a - sin ¢o (18)

r
41
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Fig. 7 shows the relations between the fixed edge forces of the cap

and the joint forces, from which it is apparent that

To= M
Me Pp =
HF Pv = Q‘VF (19)
Q'F - -1 0
MF“Q’F {R} = 10 {SF}
(:)"""f1r 0
] JOINT
FIG. 7

The 3x3 matrix in (19) is the equilibrium matrix of the spherical cap

A (see III, D, 1) with a minus sign. Hence

R = -A * 85 (20)
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b) Conical Ring.

Fig. 8 shows a conical ring

under internal pressure P, -

To find the membrane displace-

ments, we need some arbitrary

—_— support to balance the pressure

vertically. For this purpose

we choose to hold the cone at

upper edge such that the

meridianal displacement v of
the top edge is zero. This, we recall, is the same boundary condition
as used in detemining the meridianal stretch in the fle'xibility matrix
(see 1III, B, 1).

Under this assumption the displaced cone will be in the dotted
position a'b'c'd'. (Note that angle changes are not shown in Fig. 8.)
A rigid body displacement will bring the cone to the dashed position
a bcd vwhere the top edge of the cone is at the original level. We
see that such a movement does not change the magnitudes of the horizontal
displacements Bmi and Sm 3 and the meridianal stretch e Thus the
stiffness matrix obtained in IIT, B, 1 can be used directly to find the

fixed-edge forces.

Membrane solution of conical shells gives:

p_cot & sz.)
Nmi = L 5, - ""1)
2 i 54
prcotaa ii )
7 = - 3s., +
Xmi 2 Bt T8
ho) cotga
> . om —= .25 (21)
Xmj Et J
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mi

mj

2

cOSs
pr

o

T2 Et sino

2
a
pcos

Et sin

pr cot O

L Et

[(2-\')812 + y sje]

' S.

J

2

[(1—2v)(sj2 - sf)

By the same reasoning as followed in (a)

where v
m

Also

or for the

A(0)

where An 1s the equilibrium matrix relating the edge forces to the

joint forces of the nth

Ll

= ﬁ B .

n

th

element in general

’

z (@)

o ()

7

= -k v
m
} and
Akv
m

element (see

-2 sjao log i

Y

III, D, 1).

S

3

i

|

(22)

(23)
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¢) Cylindrical Ring. Equations (22) and (23) still hold

except the stiffness and equilibrium matrices used should be those of

the cylindrical element. The membrene deformations {Vm} in this

case are

wi

WOWI
[]

mj
2

- p,a

bmig—gt (2k)

2

a

Pr

J Et

vp.raf
&n - —

]

Bm

With the Joint loads determined in the above described manner,

a standard matrix solution will yield
( ( )w
= (n
Mi
% (n)

M
J

5(n) ﬁ ﬁi(n) |

n
(/]

ﬁj(n)

= (n)
K

L

which represent nnly the effect of the system of joint loads resulting

from the unbalanced fixed-edge forces. The final edge forces in the nth

clement are

50 4 (n) (25)

gln) _ .

while Ni(n> - ) Hj(n) + Nmi(n) )

k5




D. Matrix Solution of the Problem

1. The Standard Matrix Operations. It was mentioned at the begin-
ning of this section that four kinds of matrices are needed to solve a
problem of &Xxisymmetrical shells of revolution. We have already discussed
the formulation and application of the stiffness and load matrices. Now
we shall show the formulation of the displacement transformation and
equilibrium matrices,

Fig. 9 shows the positive directions of the loads and displacements
of the nodal points or Jjoints of the structure which are adopted in this

report.

Joint displacements:

6 - in direction of T,
positive when flattens
the element.

A] - in direction of P,

. h
positive outward.

A - in direction of P,

positive upward.

ELEMENTS = ©,00,®, ... ®

JOINTS = 1,2,3,...n4l

FIG. 9 - JOINT FORCES
AND DISPLACEMENTS.
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Remembering

1 and 2) we

™

the definitions of the element forces and deformations (Figs.

obtain the following relations:

-'%n+l

- cos an . Ann + sinan Avn + cosctn . %nﬂ. - s:Lnan

BN

vn+1

b7




In matrix form:

' xo’ 1 o
8h o 1
[o]
5VO 0 0]
?-C'i(l) 10
763(1) 6 o
) ) =
gi(n)
= (n)
®
e (n)
\ /L
orxr
’ (O)\ R
‘o) 2
1
v
S2)] ;
Jn)

Using symbolic notations:

v = Br

-1 0
0 0
-cos d‘n 51no\.n

11, N

1

To

r
3 3
S:Eg rn+l

0 0
1 0

cos o ~-sinds
n n

—

where v 1is the matrix representing edge deformations of all elements

r is the matrix representing the displacements of all joints

and B is the displacement transformation matrix.
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Next, considering the equilibrium of each joint, with proper atten-

tion to the positive directions of the joint forces and element forces as

defined in Fig. 1,2, and 9, we have

T o= M - Mi(l)
$B, = H - g, (1) 1) cos o, Nj(l)
P = Qv + 7 gin a - Nj(l)
( T, = Mj(l) ) Mi(2)
e = Hj(l) } Hi(g) +cos @ - Nj(l) 272 cog a, Nj(z)
Frp = -sin oy Nj(l) + 72) gin a, - Nj(e)
T = Mj(n-l) } Mi(n)
L O I BT T L BRI AL
Pon = -sin @ - Nj(n-l) +2m) o . Nj(n)
'Tn+1 = Mj(n)
L Hj(n) *cos @ - Nj(n)
e N,j(n)

Note: for cylindrical element, & = 90O sin® =1, cosC& =0, T = 1,

the above relations still hold.
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From these relations we can form

3 N _ 3 o) ~
Ry Al A st
3x3 | 3x5
R, A (1)
3x10 2
B3 3x10 3
. ? . L] L
Rn+l An-l .
3x10
An
G . 3x5 | ks(n) )

or using symbolic notations:

R = AS (27)

where R 1s the matrix representing forces on all joints
S 1is the matrix representing edge forces of all elements

and A is the equilibrium matrix.

With v and S as defined in Egs. (26) and (27), we can write

S = kv (28)

where

(0)
(1)
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and k(O) = fo-l 3 k(l) fl-l 2 SO0 eSO SBROIOGSGSEOEEDS k(n) f —l

fo is the flexibility matrix of the cap

) -+
£1 <eeesess £ are the flexibility matrices of the 1% ... a®

cone or cylinder.
Egs. (27), (28), (26) yield

R AkXBr = Kr

K Ak B

which relates directly the joint displacements r +to the joint force
R of the structure. The quantity K is called the stiffness of the
structure.

With a given set of Jjoint loads R we can find in sequence:

r from (29), v from (26) and S fram (28).

This process of solution, however, involves the operations with
large matrices, such as A, B, k, consisting mostly of zeros and
therefore, poses a problem of storage for the computer. Indeed,

IBM 7090 can handle problems using only about 15 elements when this
process is employed.

One way to avoid such a storage problem is to form the structural
stiffness K directly by operating with small matrices An s Bn and
n)

k( instead of the large matrices A, B, and k .

51
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2. The Direct Stiffness Method. To avoid the difficulty of

having inadequate storage locations in the computer, we operate with
the small sutmatrices An B Bn of the large matrices A and B
appearing in Egs. (27) and (26) together with the element stiffness
k(n) and form the structural stiffness K in a different way.

In the previous article we have established for the first conical

element the following relations:

(1) _ (1) (1)

A B (1) | (30)
Rél) - A (1)
7, ) (D) [ e, (1)
1 1
X (D] Phi e i
+ P_. ‘ )
where RE(l) = L= Y rE(l) = { + = ¢ fvi >
Rj(1) Tj rj(1) eJ.
) Py N ) "y
L vj A

are the joint forces and joint displacements of the structure consisting
of only one element, i.e., element (1).
Thus, the stiffness of the structure consisting of only element (1)

is

) o oa D) g

and similarly for the nJCh structure, that is, the structure consisting

of the n cone (or cylinder), only

=) _ A x(n) B (31)
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T e ol R T

For the spherical cap

o] o}
and
L
where RE(O) = Rj(o), rE(o) = rj(o), since the cap has only a lower
edge.
By partitioning of matrices, Eq. (31) can be rewritten as
(- () ) | )] [ ()]
i ii ' i3 i
RE(n) = < ) = D . !
g (n) ®n) i gn) - (n)
3 PR F 3
N / | i L )
w(n) . (D),
where kii = Ani k Bni
=(n) . (1)
kij = Ani k 4 an
(32)
#(n) . (n),
kji = Anj k Bni
NI L N
JJ nj nJj
and Ani ’ Anj ’ Bni ’ an are subtmatrices of An and Bn such that

SR S AN

Next, we note that the joint force at any joint in the assemblage

is the sum of the forces on joints i and J of the lower and upper
elements respectively, and the joint displacement of any joint in the
assemblage is common for joints i and J of the lower and upper elements.
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This means that

R, = Ri(l) + RJ(O) r, = ri(1)
R, = Rj(l) + Ri(e) r, = rj(1)
------------------------ 8nd  —ocee-mmmmmmeeo
R = RJ(n-l) . Ri(n) r : rJ(n 1)
By = B y =y

Using Equations (32) and (33),

the structural stiffness of the

assemblage may now be put into a tri-diagonal matrix fomm

'RlW ((0), 5D Rt

R, -1;(? (k(1>+k(2>)
=(2)

Ry ‘ %51

T 7

R . o

\ n+l/ L

which is an expanded form of

R
and it should be noted that
stated in this form.

Sk

=(2)

kij .

(k(2 +k(3))

D)
) Eglil) Eg?) Tn+l

the relation

= K.

K as developed in Eq.

(29) also can be

O
= ri(a)
-------- (33)
+ I‘i(n)
.
. rl
L3 r2
' 31 ()




The process described in this article has the advantage that

i1 2 %550 Kz
the computer program, eliminating the storage of the large matrices

k , Ejj for each element are developed in a do-loop of

A, B, and k. The final K matrix is the only large matrix which

remains for subsequent calculations. If this K matrix is stored

in a conventional rectangular form, the 7090 camputer can handle problems
involving 45 conical elements. By the use of subroutines of skew

(21)

*
storage and solution or by applying a recursion process problems

involving several hundred or more elements can be analyzed.

*
Private communication from Messrs. A. De Fries and Ashvin Shah,

Graduate students of University of California, Berkeley.
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3. Special Methods for Shells Subject to Internal Pressure.

For shells subject to internal pressure only in which the stress
conditions are essentially membrane except in regions near the restraints,
some short-cut procedures can be used instead of the more general

approaches discussed above. Two such methods are described below.

a) Substitution of a known element force in place of a part of

the structure.

FIG 10

Fig. 10(a) shows a spherical shell under internal pressure p. - It
is known that the portion above jnint a is essentially in membrane
state of stress and the membrane force N¢ at a can be readily
determined. We can, therefore, consider the portion of the shell
below a , apply N¢ as an additional joint load at a (Fig. 10-b)
and thus, reduce the number of elementary cones which need to be

considered. This procedure simplifies the solution.
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b) Membrane solution plus edge-displacement effect. Fig. 11(a)

shows the spherical shell subject to internal pressure Pr .

(a) (b) (c)

FIG. 1l

We first remove the end constraints and let it deform entirely as
a membrane. The shell will take the configuraticn shown by dashed line
(2) (Figs.1ll-b and 1l-c). This deformed shape and the induced internal
forces can be easily obtained from the membrane solution. Then we
impose the known displacements at the boundary to bring the edge back
to its original location and slope. At this stage bending moments and
cross shears are induced in the shell, and the final configuration of the
shell is shown by the dotted line (3) in Fig. 1ll-c. In applying this
procedure, finite element analysis is used only in the last step of
analysis in which only displacements at the boundary are applied. Here
the problem of local moments or uneven meridianal forces around Jjoints
does not arise.

It should be remembered that the membrane solution is a convenient
approximation. It represents a simplified particular solution of the
governing differential equation of the shell. But for most cases, the

error introduced in such an approximation is found to be negligible.
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IV. APPLICATIONS OF FINITE ELEMENT SOLUTION

A, Examples 1-10

A large number of examples had been worked out in order to test the
correctness of the formulations presented in the previous sections and to
explore the advantages or disadvantages of each particular sequence of oper-
ations. A number of these examples will be presented in this chapter to
illustrate applications of the method and to illustrate some of the diffi-
culties encountered in soclving problems.

For convenience of comparison, most of the examples involve the
analysis of the same shell by different procedures. Thus, methods of using
different joint loads, different number of elements, different stiffness
of spherical cap, and special short-cut procedures are illustrated. Only
one example is solved for a cylindrical pipe to illustrate the application
of cylindrical elements.

The shell analyzed in most of the exemples is a spherical one of
constant thickness fixed at the bottom with a central semi-angle of 750, a
radius of 100 in. and thickness of 1/2 in., subject to an internal pressure
of 100 psi. The assumed material properties are E = lO7 psi and ~ = 0.2.

(22)

Hetényi's solution of a spherical shell which is believed to be

sufficiently accurate for all practical purposes is used as a basis of com-
parison. Rajan also formulated a solution for spherical shells(gs) in
closed mathematical form; the critical values of meridianal moments obtained
by using this method are also listed for camparison.

Several steps are inveolved in solving the problem. First, decision

must be made regarding the number of elements to be used to approximate the
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actual shell and where the joints should be located. When the locations of
the joints are selected, the geometry of the conical elements can be com-
puted and fram this the appropriate Thompson functions are obtained using
certain parameters. The flexibilities and/or stiffness of the elements are
then developed using these Thompson functions. Separate computer programs
have been written for these purposes including the calculations of approxi-
mate joint loads. When the stiffnesses of the elements are available, one
single large program takes care of all the remaining steps of the solution
including the development of Jjoint loads from fixed-edge forces if necessary.
A1l computations are carried out by IBM TO90 computer, under the UCB
Computer Center job number 255.

The criterion for Jjudging the accuracy of a solution is a comparison
with other known solutions of the distribution of the meridianal moments
in general and especially of their critical values at the fixed edge. In
a few cases the meridianal tension is also shown.
Ex. 1 The 75° sphere was analyzed as
an assemblage of a 50 spherical
cap and 25 cones as shown in

Fig. 12. Approximate Jjoint loads

were used.

The meridianal moments Ms’
membrane force Ns at each joint
and the displacements Ah and
A& of each joint are tabulated

below.

In the table, NS below joint indi-
cates the Ni force in the element

below the joint, Ns above joint

indicates the Nj force in the

FIG. 12 - 25 CONE ARRANGEMENT  clement above the joint.

OF 75° SPHERE. For each element Ni =T - Nj'
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N N
Jotnt) #1 M AbovesBelow by | & Jotnt| § | 1y Mbove| Below| ‘n | D
1 |5°[-608 6731 |.0091|.0931} 14 [L4Lk]|-113(4B62 |5133 |.0557 [.0630
2 |8 }-155|4215 {6027 |.0135].0990| 15 |47|-111]|4875 }5117 |.0588 .o6oé
3 |11{- 85[4396 |5724 |[.0159|.0882| 16 |50|-112|L4887 |5111 |.062k |.0578
4 |ak|- o7|hs1lk |5551 |.0191|.0829] 17 |53|-134|L905 |5120 |.0659 .055;~
5 {17|-110|4595 [s5k4é |.0230|.0812| 18 |56[-112|4933 |5109 .067; ;;;;5
6 |20|-114{4655 |5370 |.0272|.0802] 19 |59|-107 Lokl |5096 |.0683 .oh6;
7 |23]-114| 4701 {5316 |.0312|.0789] 20 |62|-103|L4ok8 |5084 |.0T706 |.0k33
8 |261-114|4738 |5272 |.0351|.0773) 21 |65|-104{4955 [5061 |.0752|.0L08
9 |29|-114|4767 (5238 |.0388|.0754] 22 |67|-127|4981 |5054 |.0761.0381
10 |32|-114| k792 |5208 |.0k25|.c733] 23 |69|-165|498k (5052 |.0687|.0321
11 |35(-115|4813 {5185 |.0ok60|.0710] 2% |T71|-161{L987 [5045 |.0LY5 |.0220
12 | 38|-115|L4832 {5168 |.okok|.0685] 25 |T73]|+ 15{4990 |50L2 |.019T|.0091
13 |[41-114| 4848 |51L49 |.0526|.0659) 26 | 75| +544|L993 0 0
NOTE: All quantities are in inch and pound units.
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Ex. 2

The same assemblage as in Ex. 1 was analyzed with joint loads

derived fram the fixed-edge forces of the elements.

ness was used for the cap.

The results are tabulated below.

A2 x 2 stiff-

N N
Totnt] ¥ AbovesBelow o] A% Above |Below R
1 |-507 3849 |.0132 |.11L43] 14 110 5141 |4870 | .0552 [.0629
2 |- 36 6147 (4216 |.0148 |.1029] 15 111 [5127 |4882 |.0581 [.0599
3 68 5780 |4408 |[.0165 {.0898] 16 111 5114 |48k | .0608 |.0567
L 81 {5589 |4526 {.0195 |.08k1f 17 | 113 |5102 {4905 |.0633 |.0533
5 85 5470 4607 |.0232 |.0821] 18 116 5092 |4915 | .0658 {.0L99
6 91 5389 |4666 |.0272 {.0808] 19 119 5082 | ko2k | .0688 |.0469
T 97 [5330 {4711 |.0311 |.0793] 20 | 110 |5072 | 4933 | .0729 |.Okllk
8 | 101 |5285 {4747 |.0349 |.07TTS| 21 59 | 5063 | 4960 | .0754 |.0k10
9 103 5250 | 4776 |.0386 |.0755} 22 |-1.2 5038 | 496k | .0739 |.0373
10 | 105 5220 | 4800 |.0k21 |.0733] 23 |- 60 5034 | 4967 | .0669 [.0315
11 107 5196 {4821 |.oks56 |.07T09] 2k |- 64 5031 | 4bo71 | .0487|.0217
12 | 108 5175 | 4839 |.0489 |.0684] 24 112 5027 | 497k | .0195 |.0090
13 109 5157 | 4855 |.0522 |.0657] 26 62 502k 0 o-—“
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Ex. 3 The same assemblage as in Ex. 1 was permitted to deflect as a mem-

brane, then the edge was forced back to its original position and

values for the same shell based on Hetéhyi's and Rajan's solutions.

It is significant to list for the purposes of comparison the Ms

the membrane and bending displacements.

accuracy of these solutions is known to be very good.

62

inclination.
N ' N
Jornt) Above| Below e g el B Above | Below b G
1 |-7.2 -53.0[.0070 |.o841] 1% |-0.3 |-1.1 |-1.1 [.0556 |.0630
2 [-3.5 -33.2[-22.8(.0112 {.0846] 15 -.13 (-1.0 |- .9 |.0585 .6%66
3 {-0.9 -16.6| -12.71.0153 |.0840} 16 -.27 (- .9 |- .8 .oélé—jaﬁéé
i L ]-0.1 -10.0| - 8.1 (.019%4 |.0831] 17 -.02 [~ .8 {- .8 |.0638 .0555
5 (-.05 |[-6.7/-5.6].0234(.0819 i§”M\‘;1.6 - .8 |- .7 [.0662 .oﬁsi
6 |-.07 - 4.8/~ k.1.0274 |.0B06]| 19 +4.8 :—.7 - .7 *.0688 .oﬁ%B
T |-.08 - 3.6}~ 3.3(.0313{.0791] 20 +3.3 |- .T |- .6 |.0722 .dﬂ39
8 |-.06 |-2.9-2.5|031|0773| 22 |-22.8 |- .6 |- .6 |.0o757 om0
9 |-.05 - 2.3|- 2.1/.0388.0754] 22 -64.2 |- .6 |- .6 |.0753 .65;5
10 [-.0% |- 1.9]- 1.7{.0k24|.0T26] 23 |-112.8|- .6 |- .6 |.0681 |.0318
11 [-.03 |- 1.6/~ 1.5].0459|.0720] 2k |-112.2/- .6 |- .6 |.0k02 |.0219
12 {-.02 - 1.4)- 1.3}.04931.0685] 25 +63.9 |- .6 |- .6 |.0197 |.0092
13 |-.01 - 1.2{- 1.2/.0525 [.0658] 26 +595.41 - .6 0 0
Note: 1. Add 500 #/in (the constant membrane force) to the results of
bending analysis to obtain the total Ns in the shell.
2. The displacement values listed are total displacements caused by

The
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Hetenyi's Solution

l

) M 1) M ) M ) M
50 26 | -.00012 47 | -.1101 67 -63.66
8 29 - .0004k4 50 -.2491 69 -112.1
11 Less than| 32 -.00051 53 -.00k2 T -111.7
14 n 35 +.00132 56 +1.636 T3 +62. 44
17 10 38 | +.00706 59 | +4.839 75 +589.2
20 L1 +.0119 62 +3.338
23 L -.0110 65 -22.55
Rajan's Solution
1) M ) M ) M ) M
5° 26 k7 | -.1049 67 - 6k.3
8 29 -.00035 50 | -.2311 69 -110.5
11 | Less than| 32 | ..00039 53 | +.0253 T 10k .k
1k _h 35 | +.0012 56 | +1.65 73 + 79.8
17 10 38 | +.0063 59 | +.70 15 +616.0
20 L1 | +.0103 62 | +2.82
23 Ll -.0118 65 -23.5
BEx. L The T75° sphere as in Ex. 1 was

FIG. 13 -10 CONE
ARRANGEMENT

divided into 10 cones and a 5°
THe
analysis was obtained by a super-

cap as shown in Fig. 13.

posing edge displacements found

from the membrane solution to ob-
tain correct boundary conditions.
The meridianal moments are listed

below.

Joint Ms Joint Ms
1 -12 T +1
2 -2 8 + 6
3 |- 9 | -23
L -4 10 (-125
5 -.2 11 | +594
6 -.3
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N=5000

F1G. 14 -23 CONE ARRANGEMENTS
WITH CAP REPLACED BY
A MEMBRANE FORCE.

The same 750 sphere as in Ex. 1.
A 30o cap was removed and the
remaining pcrtion divided into

23 conical rings (Fig. 14). The
force at the edge of the cap,
known to be very close to membrane

. pa . .
tension of "=, is applied in

2
the direction of the tangent of
the cap. The pressure over the
remaining portion of the sphere
was approximated at the Jjoints

as usual. The solution yields

the following meridianal moments.

Joint| @ M Joint| ¢ M Joint| @ M
1 | 30° 0 9 46 -51.h4 17 62 -47.8
2 |32 -10.8 10 L8 -51.2 18 6k -61.2
3 | 3k -31.6 11 50 -51.2 19 66 -93.1
L4 36 -45.8 12 52 -51.1 20 68 -141.8
5 |38 -52.0 13 54 -50.5 21 70 | -175.0
6 4o -53.3 14 56 -49.2 22 T2 -101.9
7 b2 -52.7 15 58 -47.1 23 Th +239.0
8 Ly -51.9 16 60 -ks. k4 oL 5 +565 .6
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Ex. 6

The 750 sphere of Ex. 1 was divided in three different arrangements
of cones, and analyzed with the approximate joint loads. The three cone
arrangements are: .

(1) 5° cap and 25 cones with subtended angles ranging from top to
bottom of 20 of 30 and 5 of 2°. This is the arrangement used in
Examples 1, 2, and 3.

(2) 50 cap and 35 cones with subtended angles of 5 of lo, 5 of 20,

10 of 3°, 10 of 2°, and 5 of 1°.
(3) 50 cap and 45 cones with subtended angles of § of lo, 25 of 20, and

15 of 1°.

The resulting meridianal moments for each case are plotted in Fig. 15.

600 §=590.3 APPROX. CONC. JT. LOAD
82.4 | 5° CAP
500 544 .1 I
400 | —o— 45 ELEM: 5-1°, 25.2° 15-1°
] -~ 35 ELEM: 5.1°, 5-2°, 10-3% 10-2% 5-1°
300 Ik ~-o-- 25 ELEM: 20-3° 5-2°
200
100
kAP .-*0- O+ OO=C=0—O> OO x
e e e B o= g 5° CAP (3X 3 STIFF)
g ]
- 200 VX
10° \
- 400 ‘

FIG. 15 Mg DISTRIBUTION FROM SOLUTIONS
USING APPROXIMATE JOINT LOADS.
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Ex. 7 By the same three cone arrangements as in Ex. 6, the shell was

analyzed with F.E.F. joint forces. The resulting meridianal mom-

ents are plotted in Fig. 16.

—642.8
FEF JOINT LOAD
600 $-~608.5 o
600.1 I l ‘ l 5°CAP
500 i —o— 45 ELEM: 5.1°, 25-2° 5-1° !
--ra--- 35 ELEM: 5-1°, 5-2° 10-3° 10-2° 5-1°
400 --g-- 25 ELEM: 20-3° 5-2°
300
200
100 e e e e o - Ty
- S = T,
0o J\CW - RN
A L f ‘7 ‘ \?
, Y
I \
200 10° ') 5% CAP(2X2 STIFF)
[ \
I
- 400 L 4’ ﬁl ¥

FIG. 16 Mg DISTRIBUTION FROM SOLUTIONS
USING FEF JOINT LOADS.

Ex. 8 Same three cone arrangements as in Exs. 6 and 7. Superposition of

edge-displacement effects on membrene solutions. The resulting MS

are plotted in Fig. 17.

MEMBRANE + END DISPL.
/595.9
600&595.4 ——o— 10 ELEM: 4-10°% 6-5°
500 593.7 ---+--- 35ELEM: 5-1° 5-2° 10-3%10-2°% 5-1°]
-l - - N - ° - @
400 ] -o- 25 ELEMi 20-3° 5-2
300
200 J
100 e B 5° CAP{3X3 STIFF)
|
[} o > e a
-Ioo ﬁ
-200 r L ho” | ]

FIG. 17 Mg DISTRIBUTION - END DISPLACEMENT EFFECT
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Ex. 9 The 750 sphere of Ex. 1 was analyzed with approximate joint loads

600

500

400

Joom

200

100

- 100

- 200

- 300

using three different cone arrangements which involve uniform
element lengths and break angles everywhere in the shell, ecxcept
in regions next to the cap. The three cases are:

(1) 5° cap and 45 cones: 5 of 2°, 40 of l-:EL-O

(2) 50 cap and 35 cones at 2° spacing

(3) 5° cap and 24 cones: 1 of 1°, 23 of 3°

The meridianal mcments are plotted in Fig. 18.

566.9 (+29.0 = 595.9)
5448 (+51.2 = 596.0)
453.5(+114.3 = 597.8)

RESIDUAL MOMENT - SPACING OF JOINT

---0--- 45 ELEM. 100
-—&—~ 35 ELEM.
—o— 24 ELEM.

Mapprox. @ PRTD &

3 2 % e

D000y

o
4
5

Ei
!
{

_%.

R

H
i

/]

K

N.—-A

s
M‘%

E

FIG. 18 Mg DISTRIBUTION FROM SOLUTIONS USING
EVEN SPAGCING OF JOINTS.
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Ex. 10

1000 b. jn.

A circular pipe 20" in diameter,

EOO.:.‘ 35" long, and 3" thick is sub-
“: Jected to a moment of 1000

lb-in/in and a horizontal force

of 1500 1lbs per in. at one end;
Let

the other end is fixed.
2 E=3x106psi,'\7=0.

7777777777777 This problem was solved by a
closed form mathematical pro-
cedure using 35 cylindrical
The
results of both solutions are

tabulated below.

FIG. 19

elements of 1" length.

Pipe Solution by Mathematical Approach

Jointf M_ Q v Moint | M_ | Q v |Joint] M| Q o
1 1000 |1500| .0252} 13 {1083 |-302|-.0018] 25 |-150 | 10 |-.0002 |
2 2234 | 985 .0206} 1k 801 { -261]-.0019] 26 |-138 | 1k -.05517
3 [3003 | 570 .0163} 15 561 | -219 |-.0018} 27 |-122 | 17 |-.0001
4 13kos5 | 2kt] .o125) 16 363 | -178|-.0017| 28 |-104 | 18
5 13525 51 .0091} 17 204 | -140{~-.0016} 29 |- 86 | 19
6 |3439 | -167] .0063} 18 81 {-10T7|-.0014] 30 {- 67| 18
7 13210 | -282] .o0ko} 19 - 11 |- 78]-.0012} 31 |- k9| 18 tess
8 {2890 [-350] .0021f 20 |- 761- 53|-.0010] 32 |- 3| 18 | them
9 |2s22 | -381) .o007] 21 | -120 |- 33[-.0008| 33 |- 13| 17 107"
10 {2137 | -385{-.0003| 22 -145 | - 181-.0006| 34 Lot
| 11 1759 | -369{-.0010} 23 | -156 |- s5|-.0005| 35 | 21| 17
12 |1hok | -339]-.0015) 24 | -157 4 {-.0003} 36 38| 17
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Pipe Solution by Finite Element Approach

Joint| M_ | Q w Point | M_ | Q v Point| M | Q v
1 {1000 {1500 | .0252{ 13 |1082 |-302{-.0018] 25 |-150 | 10 |-.0002
2 {2234 | 985 | .0206] 14 8o1 |-261|-.0019] 26 -1§;_q 1% |-.0001
3 |3003 | 570 .0163] 15 561 |-218|-.0018] 27 |[-122 | 17 -.0001 |
L |3405 | 247 | .0125} 16 363 |-178|-.0017] 28 |-104 | 18 7
5 13525 5| .0091} 17 204 |-1k0|-.0016| 29 |- 86 | 19
6 |3438 |-167| .0063] 18 81 |-107{-.0014| 30 |- 67 | 18
7 13209 |-282| .o0k0] 19 - 11 |- 78|-.0012] 31 |- 49 | 18
8 |2890 |-350] .0021| 20 |- 77 |- 53|-.0010] 32 |- 31 | 18
9 |2522 |-381| .0007| 21 |-120 |- 33{-.0008] 33 (- 13 | 17
10 [2137 |-385(-.0003| 22 -145 |- 17|-.0006| 34 . _17
11 {1758 |-369 |-.0010] 23 |-156 |- 5|-.0005} 35 21 | 17
12 |1403 [-339|-.0015| 2k |-157 4 |-.0003] 36 38 | 17
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B.

Computer Programs

For an elastic analysis of shells of revolution, the following

individual programs (coded originally in Fortran language) are now avail-

able.

1.

70

Geometry and Thompson functions for conical elements.
The argument for Thompson functions (yi, yj) may be very large,
and the Thompson functions will involve numbers much greater than

38 38

10°" or smaller than 10~ which are beyond the capacity of IBM T090.
Fortunately, the flexibilities of a conical element always involve the
product of a ber-series function and a ker-series function. This pro-
gram yields Thompson functions in which a certain positive power is
taken off from all the ber-series functions while an equal negative
power is teken off from the ker-series functions. These Thompson
functions of false power will yield the correct flexibility matrix of
a cone Just as well as Thompson functions of true power.

Flexibility and stiffness of conical elements, good for &% 900.
Thompson functions for individual numbers, good for arguments up to
120, output in true power.

Flexibility and stiffness of spherical cap.

a. with singularity

b. without singularity together with F.E.F. output

Flexibility and stiffness of cylindrical element (in subroutine form)
Approximate joint loads

Solution program using approximate joint loads and 3 x 3 cap stiffness,
good for L5-element cone arrangement and for zero or known end-joint

displacements. For other boundary conditions, it is necessary to

regroup the unknowns and change the arrangements of several matrices

involved.




Solution program using 2 x 2 cap stiffness and F.E.F. joint loads.
The F.E.F. joint loads are developed within the program. The ocutput
gives the final solution (sum of fixed cones solution and the effect
of unbalanced joint loads). This is good for cases with the same
boundary conditions as mentioned in 7.

A program to compute the remaining forces (Né, MG) and stresses in

the cones.
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V. CONCLUSIONS

Examples 1 and 2 of the previous chapter showed that the solutions
using approximate joint loads and the F.E.F. joint loads represent two
opposite trends of slow convergence. The former (using approximate loads)
yields negative maments in the interior regions of the shell, and I\T'j
values in the conical elements smaller than the known membrane force, while
the Ni values are always greater than the Nj values. The latter approach
(using F.E.F. joint loads) yields positive moment at interior Jjoints and
Nj values greater than the known membrane force, while the Ni values are
always smaller than the NJ values. It is believed that the appearance
of negative residual maments in the first approach is a natural consequence
of the application of concentrated forces, and that the appearance of posi-
tive residual mament in the second approach is due to the fact that by the
procedure used we have introduced some large quantities (the F.E.M.) into
a region where these quantities do not exist. Since the unbalanced moment
around a joint is much smaller than the fixed-end moments and the distributed
moments can never exceed the unbalanced moments in magnitude, positive
moments remain at the joints. However, as the number of elements becomes
very large and the element lengths become small, these residual moments,
positive or negative, do diminish. Examples 6 and 7 showed that the results
of analysis by both approaches converge. Examples 1, 2, 3 point out the
fact that the joint displacements obtained by different procedures are
about the same.

Example 5 illustrated theuse of a short-cut method by which a 23-element
solution yields nearly as good results as a regular solution using 45

elements (Ex. 6).
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Examples 6 and 7 showed that whenever joint loads are applied some
residual moments always remain in regions where the stress condition is
known to be membrane. These residual moments are positive when F.E.F.
Joint loads are used and negative when approximate Jjoint loads are used.
Their magnitudes depend on the lengths of the elements and the break angle
between the elements. When the element lengths and break angles are made
smaller, the residual moments diminish quickly Uﬁct,lz). It appears that
by averaging the results of a solution using approximate Jjoint loads and
those of another solution using F.E.F. Jjoint loads, both based on the same
arrangement of elements, the correct results can be obtained. Such a step,
however, needs rational Justification.

Examples 4 and 8 indicate the advantage of superposition of edge dis-
placement effects on a membrane solution. By this procedure a 10-element
arrangement yields nearly as good results as does a 25-element or a
35-element arrangement. No problems of residual moments arise.

Example 9 showed that when constant element lengths and break angles
are used throughout (except near vertex), the MS distribution using var-
ious element lengths all take the same shape. Their plots appear only at
different heights from a base line in a graph. These different heights
from the base line represent the residual maments for the particular
elgment lengths and break angles used in the analysis. Comparing Examples
8 and 9, we see that the correct Ms distribution can be obtained by sim-
ply shifting the base line down (for approximate joint loads) and up (for
F.E.F. joint loads) through an emount equal to the residual moment and
read the curve referred to the new base line. But if the lengths of the
elements are kept the same while the break angles are not (possible near

boundaries), such an approach should not be taken because the non-uniformity

3



of bresk angles will cause local change of the slope of the M curve and

S

thus impair the correctness of the result.

Exemple 10 simply showed the correctness and accuracy of using cylin-

drical elements for a solution.

Th

We thus come to the following conclusions.
Finite element analysis of axisymmetrical shells of revolution does
give correct results, but due to the space nature of the problem, a
much larger number of elements than that needed for a frame analysis

is required for the desired accuracy.

The use of F.E.F. joint loads, although exact in concept, offers no
practical adventage over the use of approximate Jjoint loads. On the
contrary it involves more steps for a solution than does the use of

approximate joint loads.

For possible cases, a solution by superposition of edge~displacement
effects and membrane effects is always recommended. Such a solution
can make use of a relatively small number of elements and yet yield
accurate results. For shells with arbitrary shape and thickness, a

finite-element membrane solution is fairly simple to formulate.

The use of equal element lengths and equal bresk angles throughout
the shell is recommended. In such cases a relatively small mumber of
elements could yield correct results by the use of shifting base line

approach discussed before.

Short-cut methods of replacing a portion of the shell with known

forces can be used to save effort if possible.

Joint displacements are relatively insensitive to the solution method

and the number of elements used.
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